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Abstract— There is an explosion in the number of new
approaches being developed for extracting information from
biological data, creating a need for intelligent ways to utilize
so many methods. We take a perspective based on viewing
methods as filters which reject undesired data and which may
have complementary and redundant performance. We consider
approaches for efficiently combining such filters. We provide
quantitative strategies for choosing which filters to use and the
best order to apply them, based on viewing each filter as a coor-
dinate transformation on performance metrics. The approach
is demonstrated using a range of methods to filter sequence
data for homology detection, where we show the advantages of
more sophisticated strategies in terms of achieving competitive
speed with significantly-improved rejection of undesired data.

I. INTRODUCTION

Researchers across many fields are continually developing
new methods that are often overlapping as well as comple-
mentary in their application, leading to a new challenge in
determining which is the best method to use. For example
[1] (and accompanying website [2]) lists over 100 methods
in high-throughput sequencing, comparing them for a list of
factors to aid in selection of the most appropriate method for
a task. A related direction of research is the combined use
of multiple methods to achieve better performance than any
of the individual methods could attain. Improvements could
potentially be achieved in terms of accuracy and extraction of
independent information; one approach is the use of voting
methods to combine predictions from different methods
(e.g. [3]); another is to devise methods that merge other
approaches somehow, for example to address the closely-
related problem of combining multi-omic information [4],
[5].

Gains made in computational tractability by utilizing com-
binations of methods have also proven critical to research
progress. A wide variety of pre-processing techniques are
employed out of necessity, generally on an ad hoc basis,
in order to produce a problem of manageable size. Indeed,
improvements in computational load is one of the key
benefits advertised for the broad strategy of feature selection
[6], [7]. For example in bioinformatics, BLAST filtering
[8] is commonly used to eliminate regions of DNA with
low probability of matching a target sequence for homology
detection. The presumption is that with the pre-processing
step, an equally-accurate final result is achieved using far less
time and fewer resources. A recent approach which turns the
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process somewhat in the other direction, is taken by research
on screening methods for LASSO regression [9], [10]. Here,
the pre-processing algorithm is specifically created with the
performance limitations of the final algorithm in mind. The
goal is to similarly eliminate variables using an efficient
univariate test, before applying the LASSO optimization
algorithm on the reduced problem. The above-mentioned
accuracy assumption is guaranteed by design for so-called
”safe screening” methods [11] which only reject variables
which are not in the final LASSO solution.

These strategies for combining methods can be themselves
viewed as broader methods, or “meta-methods”, which com-
bine the advantages of multiple tools, and produce a result
superior to that which any can individually achieve. This
overall performance metric used to select such strategies de-
pends on not just resulting accuracy, but also computational
speed. Such a perspective is taken by [12], which considered
a high-level formulation of sequence filters for homology-
detection where the collection of potential filters is the set
of candidate methods. Individual filters were rated based on
metrics for accuracy, efficiency, and computation time, using
empirical testing. In this paper we follow a similar approach.
We will generally view different variable selection methods
as filters and consider a process whereby the above metrics
are estimated for a set of candidate filters. Then we will de-
velop optimal strategies for selecting combinations of filters.
We provide simulated results demonstrating improvements
in performance that may be achieved by different strategies.

II. METHODS

We presume we have an ensemble of methods (which
we call “filters”) that perform variable elimination, generally
with different performances. The goal is to choose the best
set of filters, which reject the most true negatives for some
task, while taking the least time to do so. Filters are rated
based on their empirical accuracy, efficiency, and time; ti is
the average processing time per variable of the ith filter,
ei is the efficiency of the ith filter, and N is the total
number of variables in the data being filtered. These ratings
must be estimated from representative data. Accuracy is the
fraction of true positives retained by filtering, and in this
paper we assume all filters have perfect accuracy, as we can
simply reject those which are not highly-accurate. Hence
we have the situation depicted generally in Fig. 1, where
multiple overlapping options are available to filter variables.
Efficiency is the fraction retained after filtering, which in
the case where the number of true variables is very small,
approximates the rate of false positives.
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Fig. 1. Multiple filters, partially-overlapping and rejecting different subsets
of true negatives; all are assumed to pass true positives.

A. Independent Filters

Before moving on to more sophisticated methods, we will
start by considering the common assumption of statistically
independent filters. If we presume the probability of rejection
of a variable to be independent for different filters (except
for true variables, which are retained by all), then the net
efficiency of a series of filters is equal to the product of
the individual efficiencies. So for example the efficiency
resulting from applying filter 1 followed by 2 is e1,2 = e1e2.
Using this fact, we can write the total time taken by a series
of filters {1, 2, 3, ...} as a series of products where the time
each filter takes is multiplied by the remaining number of
variables at that point, yielding

Ttotal = t1N + t2e1N + t3e1,2N + t4e1,2,3N + ...

= t1N + t2e1N + t3e1e2N + t4e1e2e3N + ... (1)

We can equivalently view this as a series of affine transfor-
mations on coordinates for time and efficiency, as follows,

Ttotal

N
= t1 + e1 (t2 + e2 (t3 + e3 (...))) (2)

To see how we can separate or reorder the filters, we first
implement each of these transformations in homogeneous
coordinates with the following transformation,

F
(ind)
i =

ei 0 0
ti 1 0
0 0 1

 . (3)

The product of multiple filters has the same form as the
transformation for a single filter, with a composite efficiency
that is the product of efficiencies from each component filter,
and a composite time that depends on the order they are
applied. If we compare the products F

(ind)
i F

(ind)
j versus

F
(ind)
j F

(ind)
i , we have the following, eiej 0 0

ti + tjei 1 0
0 0 1

 versus

 ejei 0 0
tj + tiej 1 0

0 0 1

 (4)

This is applied to a vector (N,T, 1)T , containing N the net
number of variables remaining, and T the net time spent thus
far. The faster ordering is the choice with a smaller resulting
time term. In this case the first option in Eq. (4) is faster if

ti + tjei is smaller, and the second is faster if tj + tiej is
smaller. The ranking between these two factors is equal to
the ranking between factors of the form,

fk =
1− ek
tk

(5)

This suggests a simple ordering strategy: apply the filters in
order of decreasing fk. It is straightforward to prove that this
ordering strategy is optimal for any length composition by
considering the optimal ordering of each pair and noting that
reducing the time of any component transformation improves
the net time.

B. Successive Safe Filters

Next we consider the extreme case where filters are not
independent but pass overlapping subsets with decreasing
size, generalizing the strategy of combining a safe-screening
method with LASSO regression. Here we assume eS =
min {ei | i ∈ S}, the net efficiency of a composition equals
the best efficiency of the members. Only an ordering in terms
of decreasing efficiency is worth considering here, so we
can describe the result with successive transformations of
the form

F
(safe)
i =

0 0 Nei
ti 1 0
0 0 1

 . (6)

Here we compare the product F
(safe)
i F

(safe)
j to simply

applying F
(safe)
j , which yields the ranking of fj versus 1/ti.

Noting that 1/ti ≥ fi, we can again utilize a ranking based
on decreasing fk.

C. Disjoint Filters

We next consider the extreme case where different filters
exclude completely different subgroups of variables. This is,
in a sense, the best case scenario for multiple filters of a given
set of efficiency and time parameters. Here the action of a
given filter is a fixed reduction in the number of remaining
variables. This can be modeled with the transformation,

F
(dis)
i =

1 0 −(1− ei)N
ti 1 0
0 0 1

 . (7)

The comparison between the orderings F
(dis)
i F

(dis)
j and

F
(dis)
j F

(dis)
i , yields the same ordering strategy as with the

independent case, which can be shown to be optimal using
similar arguments.

D. Multidimensional Filter Signatures

In order to maintain more structural information about
filters and their relatedness, we extend the efficiency to
a vector model ei, which has multiple elements for the
efficiency over multiple dimensions or groups of variables,
which we choose to best provide independent information.
Ideally we would like as many dimensions as possible to
capture structural information, but we may need to limit
the length of ei for practical reasons, and so partition our



variables into groups. The coordinate vector we now use is
of the form (nT , T, 1)T ; n is a length-D vector containing
the number of variables in each dimension, and T is a
scalar containing the total time as before. We use a higher-
order version of independent filters; transformations are now
formulated as

F
(ind)
i =

 Ei 0 0
1T ti 1 0
0T 0 1

 , (8)

where Ei is a D×D diagonal matrix with ei on the diagonal,
and 1 and 0 are vectors of zeros and ones, respectively, of
length D.

Comparing pairwise products F
(ind)
i F

(ind)
j versus

F
(ind)
j F

(ind)
i as before, we get a ranking between factors of

the form

fk =
1− eTk n

tk
. (9)

So the efficiency vectors operate as a weighting on n,
the vector of net number of remaining variables in each
dimension. Unfortunately we cannot employ arguments as
used in the scalar cases to guarantee the optimal ordering for
a longer chain of filters. However our scalar results suggests a
promising greedy strategy, where we start with a (nT , T, 1)T ,
and choose the best filter at each stage according to the best
fk via Eq. (9). In the next section we will compare this and
simpler methods in numerical experiments.

III. EXAMPLE: DNA SEQUENCE FILTERING

In this section we will compare the performance of differ-
ent strategies for a set of randomly-chosen candidate filters.
The filters to be used are DNA sequence filters designed
according to the method of [12], for locating matches to a
target sequence fragment. We generated a diverse range of
filters using a sweep on input parameters for the method,
and retained those which achieved a minimum of 95 percent
accuracy on a random test sequence, resulting in 250 filters
total. The efficiency versus time to perform filtering, and a
histogram of the efficiencies is given in Fig. 2. The time is
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Fig. 2. Processing time versus efficiency, and histogram of efficiencies,
for 250 candidate filters. Note that a lower efficiency is better, see [12]

normalized to that of the fastest filter. To capture information
about filter correlation, we used a random sequence one
million base pairs long, and computed the binary vector
representing pass/reject decisions at each base pair as the

ei for the multidimensional models. In both the scalar
and multidimensional versions of the algorithm, we used a
stopping criterion of 0.001 efficiency, meaning we stopped
applying new filters when the composite filter efficiency was
within 0.001 of the efficiency possible achieved by applying
all filters in the set of candidates.

Next we investigated the performance in terms of various
properties of the candidate filter set to better understand the
effect of correlations between filters. For each data point we
performed 1000 realizations with a different subset of filters
chosen randomly each time, employing three different ways
of varying that subset choice. We also compared the per-
formance using the scalar and multidimensional strategies to
three simpler strategies. The first of these simpler strategies is
to simply use the most efficient filter (which we labeled “No
Screen”), and the second and third use that same efficient
filter but with a pre-screening performed by the fastest (“T-
Screen”) or lowest f factor (“F-Screen”) filters. Fig. 3 gives
the average net time, efficiency, and composite filter length
for ten of these 1000-realization experiments, where each
experiment used 20 filters chosen randomly from a subset
of the 250 that is restricted by a minimum efficiency (given
as the x-axis). So towards the right of the plots, the sets
of candidate filters become increasingly inefficient (recall
a filter with an efficiency of 1.0 rejects nothing). We see
that as the sets of candidates become more inefficient, both
the scalar and multidimensional strategies take increasingly
longer but are also increasingly more efficient than the simple
strategies. Further the multidimensional strategy is roughly
twice as fast as the scalar strategy, while achieving the same
efficiency.
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Fig. 3. Average performance of different strategies using 1000 realizations
of random subsets of 20 filters, repeated using different sets of candidates
restricted by different minimum-efficiency cutoffs.

Fig. 4 gives results for similar experiments, but with filters
chosen from a pool with an increasingly-higher maximum
efficiency cutoff. So to the left of the plot, only the slowest-
but-most-efficient filters are allowed, while the pool of can-
didates includes a wider range of efficiency/speed trade-offs



towards the right of the plots. Here we see somewhat closer
performance between all methods in terms of both time
and efficiency, though the inferior efficiency of the simple
methods becomes increasingly significant towards the right
of the plots. Again the multidimensional method is faster
than the scalar method, though the advantage is smaller.
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Fig. 4. Average performance of different strategies using 1000 realizations
of random subsets of 20 filters, repeated using different sets of candidates
restricted by different maximum-efficiency cutoffs.

Roughly similar results are seen in Fig. 5, where we varied
only the size of candidate filter sets. Hence towards the right
of the plots, there was a larger set of candidates for each
realization. We see that this leads to an increasingly-superior
relative performance for the multidimensional strategy, which
on average, came to dominate all other strategies except the
F-Screen in terms of speed (while remaining superior in
terms of efficiency). Smaller candidate sets chosen randomly
from the entire pool of 250 are more likely to be independent,
hence we see the relatively-improved performance of the
scalar strategy towards the left of the net time plots.

IV. DISCUSSION

In this paper we developed a framework for forming
meta-filters, based on composing multiple filters intelligently.
Our goal is to support new avenues of development for
computationally-intensive methods, which typically employ
only single-stage screening. In the most direct sense, em-
ploying such “meta-strategies” provide the potential for
significantly-improved performance. For example in our ex-
periments, by (at-worst) roughly doubling the time spent in
the screening stage (the net time taken as compared to the
simple methods) we can improve the efficiency significantly.
This means a subsequent stage utilizing an extremely com-
plex and resource-intensive method becomes usable where it
may not have been before. In a more indirect sense, these
kinds of strategies may also provide for improvements in
terms of reduced time in development as well as greater
“future proofing”, or increased lifespan, of methods. In
the conventional research culture, each screening method
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Fig. 5. Average performance of different strategies using 1000 realizations
of random subsets of filters, repeated using different sizes for sets of
candidate filters.

becomes obsolete and discarded as the subsequent, better
method, is introduced. Given the pace of development, this
may occur before the earlier method even reaches final
publication.
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